Частное учреждение общеобразовательная организация школа «Ступени»

Не бывает ошибок

- есть только уроки!
Дни работы:
понедельник - пятница

8 (495) 430-26-79
8 (495) 430-21-38

info@stupeni.com

Математика

Изучение алгебры в старшей школе  нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразо­вание символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творче­ству. Другой важной задачей изучения алгебры является получе­ние школьниками конкретных знаний о функциях как важней­шей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экс­поненциальных, периодических и др.), для формирования у уча­щихся представлений о роли математики в развитии цивилиза­ции и культуры.

Главной целью образования является развитие ребёнка как компетентной личности путём включения его в различные виды ценностной человеческой деятельности: учёба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения математике:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

Цель изучения курса алгебры и начал анализа в 10-11 классах – систематическое изучение функций как важнейшего математического объекта средствами алгебры и математического анализа, раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций, подготовка необходимого аппарата для изучения геометрии и физики.

Курс характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началам анализа, выявлением их практической значимости. При изучении вопросов анализа широко используется наглядные соображения. Уровень строгости изложения определяется с учётом общеобразовательной направленности изучения начал анализа и согласуется с уровнем строгости приложений изучаемого материала в смежных дисциплинах. Характерной особенностью курса является систематизация и обобщение знаний учащихся, закрепление и развитие умений и навыков, полученных в курсе алгебры, что осуществляется как при изучении нового материала, так и при проведении обобщающего повторения.

Учащиеся систематически изучают тригонометрические, показательную и логарифмическую функции и их свойства, тождественные преобразования тригонометрических, показательных и логарифмических выражений и их применение к решению соответственных уравнений и неравенств, знакомятся с основными понятиями, утверждениями, аппаратом математического анализа в объёме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи.

При этом решаются следующие задачи:

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и математических задач;
  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.

На основании требований  Федерального Государственного образовательного стандарта в  процессе обучения  предполагается  реализовать актуальные в настоящее время компетентностный и  деятельностный  подходы, которые определяют задачи обучения:

  • приобретение знаний и умений для использования в практической деятельности и повседневной жизни;
  • овладение способами познавательной, информационно-коммуникативной и рефлексивной деятельностей;
  • освоение познавательной, информационной, коммуникативной, рефлексивной компетенций.

Для продуктивной деятельности в современном мире требуется достаточно прочная математическая подготовка. Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры и эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления и формирование понятия доказательства.

Значимость математической подготовки в общем образовании современного человека повлияла на определение целей изучения математики на ступени среднего (полного) общего образования.

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры

Задачи курса геометрии для достижения поставленных целей:

  • изучение свойств пространственных тел;
  • формирование умений применять полученные знания для решения практических задач, проводить доказательные рассуждения, логически обосновывать выводы для изучения школьных естественнонаучных дисциплин на базовом уровне.

В результате изучения математики (геометрии) на базовом уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки; историю возникновения и развития геометрии;
  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

уметь

    • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
    • описывать взаимное расположение прямых и плоскостей в пространстве, аргументиро­вать свои суждения об этом расположении;
    • анализировать в простейших случаях взаимное расположение объектов в пространстве;
    • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
    • строить простейшие сечения куба, призмы, пирамиды;
    • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
    • использовать при решении стереометрических задач планиметрические факты и методы;
    • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Помимо указанных в данном разделе знаний, в требованиях к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.

  • применять координатно-векторный метод для вычисления отношений, расстояний и углов;
  • строить сечения многогранников;